Building Classifiers Using Bayesian Networks
نویسندگان
چکیده
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state of the art classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we examine and evaluate approaches for inducing classifiers from data, based on recent results in the theory of learning Bayesian networks. Bayesian networks are factored representations of probability distributions that generalize the naive Bayes classifier and explicitly represent statements about independence. Among these approaches we single out a method we call Tree Augmented Naive Bayes (TAN), which outperforms naive Bayes, yet at the same time maintains the computational simplicity (no search involved) and robustness which are characteristic of naive Bayes. We experimentally tested these approaches using benchmark problems from the U. C. Irvine repository, and compared them against C4.5, naive Bayes, and wrapper-based feature selection methods.
منابع مشابه
Expressive Power of Binary Relevance and Chain Classifiers Based on Bayesian Networks for Multi-label Classification
A b s t r a c t . Bayesian network classifiers are widely used in machine learning because they intuitively represent causal relations. Multi-label classification problems require each instance to be assigned a subset of a defined set of h labels. This problem is equivalent to finding a multivalued decision function that predicts a vector of h binary classes. In this paper we obtain the decisio...
متن کاملBuilding Classifiers using ayesian Networks
Recent work in supervised learning has shown that a surprisingly simple Bayesian classifier with strong assumptions of independence among features, called naive Bayes, is competitive with state of the art classifiers such as C4.5. This fact raises the question of whether a classifier with less restrictive assumptions can perform even better. In this paper we examine and evaluate approaches for ...
متن کاملRobust Opponent Modeling in Real-Time Strategy Games using Bayesian Networks
Opponent modeling is a key challenge in Real-Time Strategy (RTS) games as the environment is adversarial in these games, and the player cannot predict the future actions of her opponent. Additionally, the environment is partially observable due to the fog of war. In this paper, we propose an opponent model which is robust to the observation noise existing due to the fog of war. In order to cope...
متن کاملProject Portfolio Risk Response Selection Using Bayesian Belief Networks
Risk identification, impact assessment, and response planning constitute three building blocks of project risk management. Correspondingly, three types of interactions could be envisioned between risks, between impacts of several risks on a portfolio component, and between several responses. While the interdependency of risks is a well-recognized issue, the other two types of interactions remai...
متن کاملBayesian Learning of Markov Network Structure
We propose a simple and efficient approach to building undirected probabilistic classification models (Markov networks) that extend näıve Bayes classifiers and outperform existing directed probabilistic classifiers (Bayesian networks) of similar complexity. Our Markov network model is represented as a set of consistent probability distributions on subsets of variables. Inference with such a mod...
متن کامل